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5.1 COCHAIN COMPLEXES

The dual V∗ of a F-vector space consists of all linear maps V → F. It is not too painful to
confirm that V∗ is also a vector space over F — given linear maps p, q in V∗ along with scalars
α, β in F, the linear combination α · p + β · q is evidently another linear map V → F and hence
constitutes an element of V∗. For finite-dimensional V one can describe the elements of V∗
quite explicitly — every basis {e1, . . . , ek} ⊂ V has a corresponding dual basis {e∗1 , . . . , e∗k} ⊂ V∗
prescribed by the defined by the following action on the V-basis:

e∗i (ej) =

{
1 i = j
0 i 6= j

.

Thus, we can transport any basis for V to a basis for V∗ and express all the elements of V∗ in
terms of this dual basis.

Life gets considerably more interesting when one similarly attempts to dualize a linear map
A : V → W of F-vector spaces. Now A does not give us any straightforward way of sending
V∗-elements to W∗-elements — every p : V → F fits into an awkward zigzag with A:

W VA
oo

p
// F,

In sharp contrast, if we start with q : W → F, then there is an obvious map V → F:

V A
// W

q
// F.

Thus, for every A : V →W we get a dual map A∗ : W∗ → V∗ which acts as q 7→ q ◦ A. Our goal
here is to investigate some of the homological consequences of this dramatic reversal of domain
and codomain that occurs when we dualize linear maps.

Let’s start with a chain complex (C•, d•) over F

· · ·
dk+1

// Ck
dk
// Ck−1

dk−1
// · · · d2

// C1
d1
// C0 // 0

and dualize everything in sight:

· · · C∗k
d∗k+1
oo C∗k−1

d∗k
oo · · ·

d∗k−1
oo C∗1

d∗2
oo C0

d∗1
oo 0oo

The important fact from out perspective is that even in this dualized form, adjacent maps com-
pose to give zero; given any dimension k ≥ 0 and linear map ζ : Ck → F, we have d∗k+2 ◦
d∗k+1(ζ) = ζ ◦ dk+1 ◦ dk+2, which must equal zero regardless of ζ by the defining property of a
chain complex. If we write this dualized chain complex from left to right and shift the indexing
of the dual boundary maps by 1, then we arrive at the following definition.

DEFINITION 5.1. A cochain complex (C•, d•) over F is a sequence of vector spaces and linear
maps of the form

0 // C0 d0
// C1 d1

// C2 d2
// · · · dk−1

// Ck dk
// Ck+1 dk+1

// · · ·
satisfying dk−1 ◦ dk = 0 for every k ≥ 1.

Aside from the fact that the maps are going up the indexing rather than down, cochain com-
plexes are not very different from the chain complexes of Definition 3.9. We call Ck the k-th
cochain group and dk : Ck → Ck+1 the k-th coboundary map of (C•, d•).
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5.2 COHOMOLOGY

Let (C•, d•) be a cochain complex over a field F.

DEFINITION 5.2. For each dimension k ≥ 0, the k-th cohomology group of (C•, d•) is the
quotient vector space

Hk(C•, d•) = ker dk/img dk−1

Elements of ker dk are called k-cocycles while elements of img dk−1 are the k-coboundaries. To
acquire geometric intuition for cohomology, we will retreat to the relative comfort of simplicial
complexes.

Let K be a simplicial complex, so that each chain group Ck(K) is generated by treating the k-
simplices as basis elements. Thus, each k-simplex σ in K corresponds to a distinguished cochain
σ∗ : Ck(K)→ F, defined by (linearity and) the following action on any given k-simplex τ:

σ∗(τ) =

{
1 τ = σ

0 τ 6= σ

The collection of such cochains {σ∗ : Ck(K) → F | dim(σ) = k} forms a basis for the group of
k-cochains of K. It is customary to write Ck(K) rather than the cumbersome Ck(K)∗ to denote
this simplicial cochain group of K — there is a long-standing convention in algebraic topology to
index homology with subscripts and cohomology with superscripts.

The k-th simplicial coboundary operator is (unsurprisingly) denoted ∂k
K : Ck(K) → Ck+1(K); by

definition, this is the dual to the boundary operator ∂K
k+1 : Ck+1(K)→ Ck(K), and hence satisfies

∂k
K(σ

∗) = σ∗ ◦ ∂K
k+1 for each σ∗ in Ck(K). It follows that for each general cochain ξ in Ck(K) and

oriented (k + 1)-simplex σ = (v0, . . . , vk+1), we have the remarkably convenient formula

∂k
Kξ(σ) =

k

∑
i=0

(−1)i · ξ(σ−i), (3)

where σ−i is the face of σ obtained by deleting the vertex vi. Thus, with respect to our choice of
basis elements, ∂k

K is simply the transpose1 of the boundary matrix ∂K
k+1 for each k ≥ 0; we will

discuss three advantages of adopting this perspective shortly. In any event, the k-th cohomology
group of the simplicial cochain complex (C•(K), ∂•K) is called the k-th simplicial cohomology
group of K and denoted by the shorthand Hk(K; F) or simply Hk(K).

The first advantage of realizing that coboundary operators are transposes of boundary op-
erators (with respect to our simplex-induced basis) is the ability to visualize low-dimensional
simplicial cocycles at least over F = Z/2:

1When working with F = C coefficients, this becomes a conjugate transpose.
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To the left is a 1-cycle γ in a triangulated annulus, which we last saw when studying homology
in Definition 3.11; and to the right we have a 1-cocycle ξ in the same annulus. All the edges
being sent to 1 by ξ have been highlighted. On the left, every vertex had to be the face of an
even number of edges in γ (otherwise the boundary ∂1(γ) would be nonzero). On the right,
every 2-simplex must contain an even number of edges from ξ in its boundary (otherwise the
coboundary ∂1(ξ) will be nonzero).

A second advantage is that we can also see in small examples when two cocycles lie in the
same cohomology class; our 1-cocycle ξ represents the same cohomology class as new cocycle ξ ′

shown on the right, since they differ only by the coboundary of the highlighted vertex:

The third advantage of realizing that ∂k
K is the transpose of ∂K

k+1 is the knowledge that they must
have the same ranks as linear maps.

PROPOSITION 5.3. Let (C•, d•) be a chain complex over a field F so that dim Ck is finite for all
k ≥ 0, and let (C•, d•) be its dual cochain complex. Then, we have

dim Hk(C•, d•) = dim Hk(C•, d•)

in each dimension k ≥ 0.

PROOF. This follows from the fact that dim Ck = dim Ck and rank dk+1 = rank dk for all k:

dim Hk(C•, d•) = dim ker dk − dim img dk+1

= (dim Ck − rank dk)− rank dk+1

= (dim Ck − rank dk−1)− rank dk

= (dim Ck − rank dk)− rank dk−1

= dim ker dk − dim img dk−1 = dim Hk(C•, d•).

In particular, we have dim Hk(K; F) = dim Hk(K; F) for every simplicial complex K. �

The machinery developed for homology in the previous two chapters is readily translatable
to work for cohomology, with the standard caveat that duality will force various maps to point
in the opposite direction. For instance, every simplicial map f : K → L induces cochain maps
C• f : (C•(L), ∂•L)→ (C•(K), ∂•K), which in turn yield well-defined linear maps

Hk f : Hk(L; F)→ Hk(K; F)

between cohomology groups. There is an avatar of Proposition 3.15 which allows us to ex-
tract bases of all the cohomology groups using Smith decompositions of coboundary matrices.
Similarly, one can define cochain homotopies, relative cohomology groups and Mayer-Vietoris
sequences for cohomology. This is a worthy endeavour, strongly recommended for all those who
are encountering cohomology for the first time. Instead of reinventing that wheel here, we will
focus on those aspects of cohomology which are new and different.
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5.3 THE CUP PRODUCT

The remarkable benefit of cochains over chains is that they are functions taking values in a
field F, so we can multiply them with each other. Fix an oriented simplicial complex K, so that
each k-simplex σ can be uniquely written as an increasing list of vertices (v0, . . . , vk). It will be
convenient henceforth to write, for each i in {0, . . . , k} the i-th front face of σ is the i-dimensional
simplex σ≤i = (v0, . . . , vi), and similarly the i-th back face of σ is the (k− i)-dimensional simplex
σ≥i = (vi, . . . , vk).

DEFINITION 5.4. Let ξ ∈ Ck(K) and η ∈ C`(K) be two simplicial cochains of K. Their cup
product is a new cochain ξ ^ η in Ck+`(K) defined by the following action on each (k + `)-
dimensional simplex σ:

ξ ^ η(σ) = ξ(σ≤k) · η(σ≥k).
(Here the multiplication on the right side takes place in the underlying field F.)

Having obtained a new cochain ξ ^ η by suitably multiplying ξ with η, we should lay to rest
any curiosity regarding its coboundary.

PROPOSITION 5.5. For any ξ in Ck(K; F) and η in C`(K; F), we have

∂k+`
K (ξ ^ η) = [∂k

K(ξ) ^ η] + (−1)k · [ξ ^ ∂`K(η)].

PROOF. Let τ be a (k + ` + 1)-dimensional oriented simplex with vertices (v0, . . . , vk+`+1).
We evaluate the two terms on the right side of the desired equality separately on τ. First,

[∂k
K(ξ) ^ η](τ) = ∂k

K(ξ)(τ≤k+1) · η(τ≥k+1) by Definition 5.4,

=

(
k+1

∑
i=0

(−1)i · ξ((τ≤k+1)−i) · η(τ≥k+1)

)
by (3).

And similarly,

(−1)k · [ξ ^ ∂`K(η)](τ) =

(
`+1

∑
j=0

(−1)k+j · ξ(τ≤k) · η((τ≥k)−j)

)
.

When we add these two expressions, the i = k + 1 term of the first sum cancels the j = 0 term of
the second; the terms which survive are exactly ∂k+`

K (ξ ^ η)(τ) by (3). �

Using the above formula for the coboundary of ξ ^ η, one can confirm that the cup product
of two cocycles is again a cocycle:

∂k+`
K (ξ ^ η) = [∂k

K(ξ) ^ η] + (−1)k[ξ ^ ∂`K(η)] by Proposition 5.5,

= [0 ^ η] + (−1)k[ξ ^ 0] since ξ and η are cocycles,
= 0 by (3).

Now if ξ = ∂k−1
K (ξ ′) is a coboundary while and η is a cocycle as before, then their cup product is

a coboundary:

ξ ^ η = ∂k−1
K (ξ ′) ^ η

= [∂k−1(ξ ′) ^ η] + (−1)k · [ξ ′ ^ ∂`K(η)] since ∂`K(η) = 0

= ∂k+`
K (ξ ′ ^ η). by Proposition 5.5.
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Similarly, if ξ is a cocycle and η a coboundary, then again their cup product is a coboundary. We
have arrived at the following result.

PROPOSITION 5.6. For each simplicial complex K and dimensions k, ` ≥ 0, the cup product map
^: Ck(K; F)×C`(K; F)→ Ck+`(K; F) induces a well-defined bilinear map of cohomology groups.

It is customary to use the same notation when describing the cup product on cohomology
groups rather than cochains, i.e.,

^: Hk(K; F)×H`(K; F)→ Hk+`(K; F).

The direct sum
⊕

k≥0 Hk(K; F) is evidently a vector space over F; writing its elements as

ξ = (ξ1, ξ2, . . . , ξk, . . .),

we say that ξ has grade k if all the ξi for i 6= k are zero. The cup product gives us a bilinear
multiplication law on this direct sum which is additive on grades, i.e., the cup product of a
grade-k element with a grade-` element is a grade-(k + `) element. A graded F-vector space
equipped with such a graded bilinear multiplication is called a graded algebra over F. While
the direct sum of homology groups

⊕
k≥0 Hk(K; F) also forms a graded vector space, there is no

multiplication law analogous to the cup product. It is in this sense that cohomology is considered
a richer algebraic invariant than homology, even though the dimensions of cohomology groups
agree with those of homology groups when working over a field.

EXAMPLE 5.7. By a torus we mean any simplicial complex T whose geometric realization
is homeomorphic to the product ∂∆(2)× ∂∆(2). Consider also the simplicial complex W ob-
tained by first taking the disjoint union ∂∆(3) t ∂∆(2) t ∂∆(2), and then identifying the ver-
tices labelled {0} of all three pieces to create a single connected simplicial complex. Now one
can check that T and W have isomorphic homology groups over any field F, namely

Hk(T) = Hk(W) =


F k ∈ {0, 2}
F2 k = 1
0 k > 2

.

Let α and β denote any two 1-cycles which span H1 and examine their cup product α ^ β. In
T, this will be (a nonzero multiple of) the unique cycle generating H2, whereas in W this cup
product will equal zero.

The cup product α ^ β in the torus is nontrivial for a viscerally geometric reason; one can
choose α to be a cochain that runs along the equator while β runs along the meridian. Now there
will be at least one 2-simplex whose 1-dimensional faces are all sent to nonzero elements of F by
either α or β. We highlight such a 2-simplex for the illustrated α and β below:

The miracle here is that no matter how much we perturb α and β within their respective coho-
mology classes, we will always have at least one such 2-simplex.



5. THE CAP PRODUCT 64

REMARK 5.8. There are no obstacles to defining cohomology with non-field coefficients, e.g.,
by using coefficients sourced from the ring of integers Z. However, various subtleties arise from
the fact that in general an abelian group G is not isomorphic to its dual group G∗; here G∗ consists
of all abelian group homomorphisms G → Z. In particular, G∗ is blind to torsion in G and
there is no analogue of Proposition 5.3 when using Z coefficients. Similarly, in this case the cup
product prescribes the structure of a graded ring on the direct sum

⊕
k≥0 Hk(K; Z) rather than a

graded algebra.

5.4 THE CAP PRODUCT

There is a second (far stranger) product that mixes homology and cohomology. As before, let
K be an oriented simplicial complex; each oriented k-simplex σ therefore has a front face σ≤i and
a back face σ≥i for i in {0, . . . , k}. Our new product arises from taking an i-cochain ξ for some
i ≤ k and letting it act on σ by

σ 7→ ξ(σ≤i) · σ≥i.

That is, we evaluate σ on the front face of the appropriate dimension, and multiply the resulting
scalar with the back face to produce a chain of dimension (k− i). More formally, note that each
k-chain γ in Ck(K) is uniquely expressible as a linear combination γ = ∑σ γσ · σ where σ ranges
over oriented k-simplices and each γσ is an element of the coefficient field F.

DEFINITION 5.9. The cap product of an i-cochain ξ with a k-chain γ = ∑σ γσ · σ is the new
(k− i)-chain ξ _ γ defined by

ξ _ γ = ∑
σ

γσ · ξ(σ≤i) · σ≥i.

(For i > k this sum is automatically zero).

The first thing to confirm about the cap product formula from the definition above is that the
expression on the right side is a (k− i)-chain — each σ≥i is a (k− i)-simplex obtained by deleting
the first i vertices of the k-simplex σ, and the product γσ · ξ(σ≤i) of two F-elements clearly lies
in F. By definition, the cap product gives us bilinear maps Ci(K)×Ck(K) → Ck−i(K) for every
pair of dimensions i ≤ k. Since ξ _ γ is a chain, it has a boundary rather than a coboundary.

PROPOSITION 5.10. For each ξ in Ci(K) and γ in Ck(K), we have

∂K
k−i(ξ _ γ) = (−1)i · [(ξ _ ∂K

k (γ))− (∂i
K(η) _ γ)]

The above result follows from a calculation which has a very similar structure to the one
which we used when proving Proposition 5.5. This has been assigned as an exercise, unlike the
the following corollary.

PROPOSITION 5.11. For each simplicial complex K and dimensions i ≤ k, the cap product _:
Ci(K; F)×Ck(K; F)→ Ck−i(K; F) induces a well-defined bilinear map of cohomology groups.

PROOF. The desired result follows from the three claims described below, each of which is
proved using the boundary formula from Proposition 5.10.
1. cocycle _ cycle is a cycle: if ∂i

K(ξ) = 0 and ∂K
k (γ) = 0, then we get

∂K
k−i(ξ _ γ) = (−1)i · [(ξ _ 0)− (0 _ γ)] = 0,

as desired.
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2. cocycle _ boundary is a boundary: if ∂i
K(ξ) = 0 and β is any (k + 1)-chain, then by Proposi-

tion 5.10, we have
±(ξ _ ∂K

k+1(β)) = ∂K
k (ξ _ β)∓ (∂i

K(η) _ β);
now the second term on the right side vanishes because η is a cocycle. Thus, up to a choice of
sign, ξ _ ∂K

k+1(β) equals ∂K
k (ξ _ β) which is evidently a boundary.

3. coboundary _ cycle is a boundary: this is very similar to the previous claim, and has there-
fore been assigned as an exercise. �

As with the cup product, it is standard to use the same notation for the cap product map on
(co)homology groups as on (co)chain groups:

_: Hi(K; F)×Hk(K; F)→ Hk−i(K; F).

The geometry of the cap product is all about intersections. If we choose a meridinal 1-cycle γ and
an equatorial 1-cocycle ξ on a torus as drawn below, then there will necessarily be at least one
edge with a nonzero coefficient in γ that is sent to a nonzero element of F by ξ; and the 0-chain
ξ _ γ will have a nonzero coefficient on one of the two vertices lying in the boudnary of that
edge:

The power of the algebraic formulation of the cap product lies in the fact that the cycle ξ _ γ is
well-defined on the level of homology even when ξ and γ are perturbed within their respective
(co)homology classes.

5.5 POINCARÉ DUALITY

The cap product becomes extremely potent when applied to the study of manifolds. Through-
out this section, we fix the following assumption:

M is a simplicial complex whose geometric realization |M| is a compact and
connected n-dimensional manifold.

(The compactness requirement is overkill since we require simplicial complexes to be finite).
The fact that every point on an n-manifold admits a local neighborhood homeomorphic to
Rn forces every (n − 1)-dimensional simplex of M to lie in the boundary of exactly two n-
simplices.

DEFINITION 5.12. We say that M is orientable over the field F if there exists a function

ω : {n− simplices of M} → {±1}
assigning {±1} ⊂ F to each top-dimensional simplex so that the chain [M] = [M]ω given by

[M] = ∑
dim σ=n

ω(σ) · σ

is an n-cycle in Cn(M; F).
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(It should be noted that any M satisfying our assumption above is automatically orientable in
this sense over F = Z/2.) There is an unfortunate historical conflation of terminology here
between orientability as defined above and the orderings of vertices which played a role in
Definition 3.3. At any rate, if such a map ω exists then [M] is called the fundamental class of M,
and it generates all of Hn(M; F) which must necessarily be a one-dimensional vector space.

THEOREM 5.13. [Poincaré duality.] Assume that M is a simplicial complex whose geometric
realization is compact, connected and orientable over F. For each i in {0, 1, . . . , n}, the linear map

Di : Hi(M; F)→ Hn−i(M; F)

given by Di(ξ) = ξ _ [M] is an isomorphism of F-vector spaces.

It is quite challenging to prove this result entirely within the realm of simplicial complexes, so
we will not make any such attempts here. But it should be noted that Poincaré duality has strong
consequences for even the simplest homotopy invariants of manifolds. Combining Theorem 5.13
with Proposition 5.3 produces the following suite of results for Euler characteristics and Betti
numbers of manifolds (see Sections 1 and 4 of Chapter 3).

COROLLARY 5.14. Let M be a simplicial complex satisfying the hypotheses of Theorem 5.13. The
following assertions hold.

(1) The Betti numbers β0(M), β1(M), . . . , βn(M) are palindromic, i.e., βk = βn−k for all k.
(2) If n is odd, then the Euler characteristic χ(M) is zero.
(3) If n = 2i is even, then the Euler characteristic χ(M; F) is odd if and only if the middle Betti

number βi(M) is odd.

PROOF. For the first assertion, note that

βk(M) = dim Hk(F) by definition,

= dim Hn−k(F) by Theorem 5.13,

= dim Hn−k(F) by Proposition 5.3,

= βn−k(M) again by definition.

The second assertion now follows from the first one by using (from Exercise 3.3) the fact that the
Euler characteristic is the alternating sum of the Betti numbers:

χ(M) =
n

∑
k=0

(−1)k · βk(M).

If n is odd, then βk and βn−k will appear with opposite signs and hence cancel. The third asser-
tion follows from the same alternating sum — but for even n = 2i all the βk appear twice (with
the same signs) except for βi, which only appears once. Thus, the expression χ(M)± βi(M) is
always an even number. �

5.6 BONUS: THE KÜNNETH FORMULA

Let K and L be simplicial complexes. We have already lamented (in Section 8 of Chapter 4)
that the product of simplicial complexes does not canonically have the structure of a simplicial
complex. Even so, it is possible to find a simplicial complex P whose geometric realization is
homeomorphic to |K| × |L|, so it makes sense to define Hk(K × L; F) as the usual homology
groups of any such P, and similarly for cohomology groups. One naturally wonders how these
product (co)homology groups of P relate to the (co)homology groups of the factors K and L.
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Variants of the following result are called Künneth formulas.

THEOREM 5.15. Let K and L be simplicial complexes and F a field. For each dimension k ≥ 0
there is an isomorphism

Hk(K× L; F) '
k⊕

i=0

Hi(K; F)×Hk−i(L; F).

As a consequence of the Künneth formula and Proposition 5.3, one can compute Betti numbers
of simplicial products via

βk(K× L) =
k

∑
i=0

βi(K) · βk−i(L).

There are several ways of proving Theorem 5.15; one strategy makes essential use of the cup
product. Given a simplicial complex P whose realization is |K| × |L|, assume that we have
managed to simplicially approximate the natural projection maps from K× L to K and L, i.e.,

K P
f

oooo
g

// // L

The goal now becomes to produce k-cochains in P from pairs of the form (ξ, η) where ξ is an
i-cochain in K while η is a (k− i)-cochain in L. And the map which accomplishes this task is

(ξ, η) 7→ Ci f (ξ) ^ Ck−ig(η).

EXERCISES

EXERCISE 5.1. Given a simplicial map f : K → L, define the associated cochain maps
Ck f : Ck(L; F) → Ck(K; F) and show that they commute with the coboundary operators (i.e.,
state and prove a cohomological version of Proposition 4.5).

EXERCISE 5.2. State a version of Definition 4.18 (short exact sequences) and Lemma 4.19
(the Snake lemma) that works for cochain complexes and cohomology.

EXERCISE 5.3. Show that the cup product is associative, i.e., for cochains ξ, η and ζ of a
simplicial complex K, prove that

(ξ ^ η) ^ ζ = ξ ^ (η ^ ζ)

[Hint: by linearity, it suffices to evaluate both sides on a single simplex σ.]

EXERCISE 5.4. Let f : K → L be a simplicial map and consider a pair of cochains ξ in
Ck(L) and η in C`(L). Prove that Ck f (ξ) ^ C` f (η) = Ck+` f (ξ ^ η). [Thus, we have
Hk f (ξ) ^ H` f (η) = Hk+`(ξ ^ η) whenever ξ and η lie in Hk(L) and H`(L) respectively.]

EXERCISE 5.5. Prove Proposition 5.10.

EXERCISE 5.6. Prove the third claim of Proposition 5.11.
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EXERCISE 5.7. Let f : K → L be a simplicial map. There is a diagram of F-vector spaces, a
part of which is shown below:

Hi(K) × Hj(K)
_−→ Hj−i(K)

Hi(L) × Hj(L) _−→ Hj−i(L)

(1) draw three vertical arrows representing maps induced by f which connect the top
row to the bottom row. What are the natural candidates for these maps?

(2) formulate an identity relating cap products and these three induced maps. You do not
have to prove that this identity holds (but it is a good exercise to meditate on).

EXERCISE 5.8. Use the Künneth formula (Theorem 5.15) to find an expression for the k-
th Betti number of the n-dimensional torus Tn obtained by taking the n-fold product of the
hollow simplex ∂∆(2).


